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1 The Planck Atomic Units

A variable stored in the memory of a computer always has finite precision. Although the floating point
system can preserve the accuracy of the calculations to some extent, it is still desirable to prevent the
numbers from becoming too large or too small. Unfortunately, in the field of quantum mechanics, such
situations are frequently encountered due to the key physical constants having extremely small values.
Examples include the Planck’s constant h (= 6.626070 · · ·×10−34 m2 kg s−1) and the Boltzmann’s constant
kB (= 1.380649 × 10−23 m2 kg s−2 K−1). One way to avoid potential problems arising from such small
numbers is switching to an alternative system of units which is more suited to the problem.

Exercise 1. Consider a system of units where ℏ = kB = 1. Show that, if we keep the unit of temperature
as the same as in the MKS system, the unit of time in this system corresponds to 7.638235 · · · ps.

The unit system introduced above is often referred to as Planck atomic units, which will be used for the
rest of this exercise.

2 The Quantum Harmonic Oscillator

The Hamiltonian of a one-dimensional quantum harmonic oscillator (QHO) is written as

ĤQHO =
p̂2

2m
+
mω2

2
x̂2, (1)

where x̂ and p̂ are the position and momentum operators that satisfy canonical commutation relation,
[x̂, p̂] = iℏ. The mass of the particle m can be eliminated from the Hamiltonian by shifting to the mass-
weighted coordinate defined by

X̂ =
√
mx̂, P̂ =

p̂√
m
, (2)

which converts the original Hamiltonian [Eq. (1)] into

ĤQHO =
P̂ 2

2
+
ω2X̂2

2
. (3)

Exercise 2-1. Confirm that the mass-weighted operators X̂ and P̂ also satisfy [X̂, P̂ ] = iℏ.

At this point, we introduce the ladder operators for the QHO

â =

√
ω

2ℏ

(
X̂ +

i

ω
P̂

)
, â† =

√
ω

2ℏ

(
X̂ − i

ω
P̂

)
, (4)
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based on which the Hamiltonian is expressed as

ĤQHO = ℏω
(
â†â+

1

2

)
. (5)

Let us adopt Dirac’s braket notation and denote the nth normalized eigenstate of Ĥ as |n⟩. Then, the
action of the ladder operators to these eigenstates is

â |n⟩ =
√
n |n− 1⟩ , â† |n⟩ =

√
n+ 1 |n+ 1⟩ . (6)

Exercise 2-2. Verify Eq. (6) based on the ladder operator treatment of QHO.

We now take the states {|n⟩} as the basis set and use it to cast the operators X̂ and P̂ in the matrix
form. For practical purposes, it is desirable to set a certain upper bound nmax for the quantum number to
maintain the size of the basis as finite.

Exercise 2-3. Write a code that accepts nmax as the input and produces the matrix representation of the
operators X̂ and P̂ .

3 Quantum Mechanical Simulation of Molecular Vibration

The result of Exercise 2-3 allows us to obtain the matrix representation of any time-independent Hamil-
tonian in one-dimension

Ĥ =
P̂ 2

2
+ V (X̂), (7)

as long as its potential energy component V̂ (X̂) can be expressed as a polynomial in X̂ to a sufficient
accuracy. This machinery can be consequently utilized to study the behavior of simple systems related to
chemical dynamics, when V (X̂) is identical or close to that of QHO.

As a primitive example, we simulate the dynamics of a vibrationally excited diatomic molecule based on
the displaced harmonic oscillator (DHO) model. In this model, the vibrational Hamiltonians in the ground
and excited electronic states of the molecule are specified as

Ĥg =
P̂ 2

2
+
ω2X̂2

2
, (8a)

Ĥe =
P̂ 2

2
+
ω2(X̂ − d)2

2
, (8b)

respectively, with d being the distance between the energy minima of the two electronic states. We assume
that the state vector |ψ(t)⟩ is initially in the ground eigenstate of Ĥg, so that |ψ(0)⟩ = |0⟩. The formal
solution of the time-dependent Schrödinger equation (TDSE) is given by

|ψ(t)⟩ = Û(t) |ψ(0)⟩ , (9)

with the propagator being
Û(t) = exp(−iĤt/ℏ) (10)

for a Hamiltonian Ĥ that is constant in time.
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Exercise 3-1. Analytically solve the TDSE under Ĥg to obtain the expression for |ψ(t)⟩ and the expec-

tation value ⟨X̂(t)⟩.

If we assume a sudden electronic excitation of the molecule at t = 0, the subsequent evolution of the
state vector will be governed by Ĥe instead of Ĥg. If d is nonzero, |ψ(0)⟩ = |0⟩ is not an eigenstate of Ĥe,
and therefore the resulting dynamics will not be as trivial as we have seen in Exercise 3-1. As for the
classical harmonic oscillator, the time dependence of the dynamics can be tracked by two different ways:
(semi-)analytical and numerical means.

Exercise 3-2. It can be shown that the expectation value of an operator evolves under the Hamiltonian
Ĥ according to the Ehrenfest’s equation,

d

dt
⟨Â⟩ = 1

iℏ
⟨[Â, Ĥ]⟩. (11)

Construct the coupled differential equation between ⟨X̂(t)⟩ and ⟨P̂ (t)⟩ based on the equation above, and
observe their similarities to the equation of motion for the classical harmonic oscillator.

Exercise 3-3. Numerically simulate the dynamics of |ψ(t)⟩ under Ĥe [Eq. (8b)] until t = 10 by both directly
evaluating the propagator Û(t) [Eq. (10)] by diagonalization and applying the fourth-order Runge-Kutta
(RK4) method. Take the vibrational angular frequency and Huang-Rhys factor of the molecule as ω = 1
and s = ωd2/(2ℏ) = 0.1, respectively, and set the maximum quantum number of the basis states as
nmax = 40. Calculate ⟨X̂(t)⟩ and ⟨P̂ (t)⟩ at time points uniformly spaced by ∆t = 0.01 (Note that ∆t has
nothing to do with the actual integration of the TDSE, if you use RK4 for the propagation), and confirm
that the obtained result matches the analytical solution predicted by Exercise 3-2.

4 Incorporating the Effect of Temperature

Up to now, we assumed that the molecule was in its vibrational ground state prior to electronic excitation.
This corresponds to the absolute zero temperature, where all molecules can be described by a single
wavefunction |ψ(t)⟩ = exp(−iωt/2) |0⟩. When the temperature is raised to T > 0 and thermal equilibrium
is established, the populations of the QHO eigenstates are dictated by Boltzmann distribution and the
wavefunctions of individual molecules are not identical any more. To describe such a statistical mixture,
we need to rely on the density matrix. The thermal density matrix for the QHO at t = 0 is expressed as

ρ̂(0; β) =
∑
n

Rn(β) |n⟩ ⟨n| (12)

where β = 1/(kBT ) is the so-called inverse temperature and Rn(β) is the normalized thermal population
for the nth eigenstate,

Rn(β) =
exp(−βEn)∑
k exp(−βEk)

. (13)

Based on ρ̂, we can express the expectation value of an operator Â as

⟨Â⟩ = Tr[Âρ̂], (14)

where Tr[Ô] denotes the trace of the matrix representation of the operator Ô. Note that the trace of a
matrix is independent under a unitary transformation, and therefore the value of Eq. (14) is not affected
by the choice of the basis set.
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Exercise 4-1. Validate Eq. (14) when ρ̂ is given by Eq. (12).

The evolution of ρ̂(t) under the influence of Ĥ is governed by the Liouville-von Neumann (LvN) equation,

iℏ
dρ̂(t)

dt
= [Ĥ, ρ̂(t)]. (15)

Exercise 4-2. Validate Eq. (15) when ρ̂(0) is given by Eq. (12).

The evolution of ρ̂(t) can be simulated by direct integration of the LvN equation [Eq. (15)] by numerical
algorithms, e.g. RK4 method. Alternatively, we can separately propagate the component wavefunctions
|ψn(t)⟩ by TDSE starting from |ψn(0)⟩ = |n⟩, and construct ρ̂(t) according to

ρ̂(t; β) =
∑
n

Rn(β) |ψn(t)⟩ ⟨ψn(t)| . (16)

As |ψn(t)⟩ = Û(t) |ψn(0)⟩, it follows that

ρ̂(t) = Û(t)ρ̂(0)Û †(t). (17)

Combining this relation with Eq. (14) leads to

⟨Â(t)⟩ = Tr[ÂÛ(t)ρ̂(0)Û †(t)] = Tr[Û †(t)ÂÛ(t)ρ̂(0)]

= Tr[Â(t)ρ̂(0)],
(18)

where the second inequality comes from the cyclic invariance of the trace Tr[ĈD̂] = Tr[D̂Ĉ] and the third
equality relies on the Heisenberg picture where Â(t) = Û †(t)ÂÛ(t).

We are now ready to define the quantum time correlation function as

⟨Â(t)B̂(0)⟩ = Tr[Â(t)B̂(0)ρ̂(0)]. (19)

Exercise 4-3. By numerical calculation, show that the quantum time correlation for the mass-weighted
position operator is expressed as

⟨X̂(t)X̂(0)⟩ = ℏ
2ω

[
coth

(
βℏω
2

)
cos(ωt)− i sin(ωt)

]
, (20)

when the time evolution is dictated by Ĥg [Eq. (8a)]. This equation plays a crucial role in the simula-
tion of complicated molecular quantum dynamics, such as transfer of electronic excitation in interacting
chromophore molecules or solvent-induced electron transfer between redox pairs.
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