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Quantum Logic Gates

Quantum logic gates are ways of unitarily manipulating the state of
qubit(s).

Every guantum logic gate can be represented as a unitary matrix in an
abstract level.

A single-qubit gate acts on one qubit and can be represented as a 2 x 2
matrix. In contrast, a multi-qubit or n-qubit gate is a 2" x 2" matrix.

The actual implementation of quantum logic gates are different for
every qubit platform, but one thing is for sure: realizing multi-qubit
gates are far more demanding compared to single-qubit gates.



Quantum Circuits

To represent a quantum algorithm by using quantum logic gates, we
put logic gates in order in the form of quantum circuits.

In the quantum circuits, each qubit is represented as a string along the
time axis, and the gates are placed in a successive order to the right.
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Example of Single-Qubit Gates

Pauli gates
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(Lecture 7/, Slide 4 for the explicit representations)
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Example of Two-Qubit Gates

Controlled NOT (CNOT, CX) gate
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Universal Gate Set

It is known that any n-qubit logic gate can be expressed by using
single-qubit gates and CNOT gates.
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For example, a SWAP gate can be decomposed as T L ? ,

which can be represented as — H I H I H I H—
H H

because j = 14 I "1™ and the Hadamard gate is its own

Inverse.



Universal Gate Set

The Toffoli gate is symbolized as i , whose matrix form is
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8 8 8 8 8 (1) 8 (1) Below Is its decomposition into single-
000000 1 0 gubit gates and CNOT gates:
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Measurement

At the end, the qubit state is measured and the outcome is converted
Into a classical bit. This is represented by the circuit diagram
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For every measurement, the qubit state |) Is projected onto a fixed
state |p) and the orthogonal state |q).

By repeating the measurement, we obtain the probabilities associated
with the two states,



Measurement

Suppose a qubit is at the state |¢) = a|0) + Be? |1) (e and § real), and
we can only make a measurement in the logical basis {|0), [1)}.

Question: how can we specify the qubit state? You can use any
single-qubit gate you want.



Hadamard Test

An ancilla is an extra gubit that is used to indirectly capture information
without performing measurements on the main “register” qubits.

Consider the circuit below:

04) H T HHAl— Ancilla

VR) U Register

Just before the measurement of the ancilla, the state of the qubits are
1 .. ..
) = 5(’01«4) @I +U)Wr)+ 1a) @ (I =U) |WR)),

whose associated probabilities are Py =|(04]%) |? and P, = | (14|¥) |*.

https://en.wikipedia.org/wiki/Hadamard_test



Hadamard Test

The probabilities are expressed as

which satisfy

Py =

1+ Re (¥| U )
2
P, — P;

?

P, =

1 — Re (¢| U )

2

= Re (¥| U ).

To obtain the imaginary part Im (v| U |2, we flip the phase of the

ancilla qubit with an additional gate:
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Inner Product between Two States

Suppose we have two different multi-qubit gates which act to the
vacuum state as U; |0g) = |¥r1) and Us |0r) = [¢g2).

We can calculate the inner product between the two states (Vg1 |Yr2)
without directly gathering information about [¢g1) and |y rs) by using

the circuit below:
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https://en.wikipedia.org/wiki/Hadamard_test






Semiconductor Quantum Dot Qubit

Sites per Qubit
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Gate-Defined QDs

(b) Contact

X 2-dimensional electron gas
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Electrostatic potential formed by
electrode gates

C. W. Kim*, J. M. Nichol, A. N. Jordan, |. Franco*, PRX Quantum 2022, 3, 040308. 15



Semiconductor Quantum Dot Qubit

Consider two electrons trapped in a double quantum dot (DQD).

(1,7) (0,2)
charge configuration charge configuration

€(1,1) = €L T €R €(0,2) X 2€R + €pair



Spin states of two electrons are classified into singlet and triplets:

External IT.) = |11)
1) 11 tic field AE = gnB.
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Energy
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Semiconductor Quantum Dot Qubit
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Semiconductor Quantum Dot Qubit
_ [Todr) — [TLdR)

1 5(0,2) s(,1) AT+ 15(1,1)) = 7

10 Singlets

: 15(0,2)) = [Trir)

S

: Hybridize via tunnel coupling t. to yield
¢ 1S0) and |S1) (spin-charge hybridization)
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Semiconductor Quantum Dot Qubit

1 5(0,2) S(1,1) L+ AB

Energy
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