8. Quantum Logic Gates and Universal Gate Sets

Chang Woo Kim Computational Chemistry Group Department of Chemistry, JNU

Quantum Logic Gates

Quantum logic gates are ways of unitarily manipulating the state of qubit(s).

Every quantum logic gate can be represented as a unitary matrix in an abstract level.

A single-qubit gate acts on one qubit and can be represented as a 2×2 matrix. In contrast, a multi-qubit or n-qubit gate is a $2^n \times 2^n$ matrix.

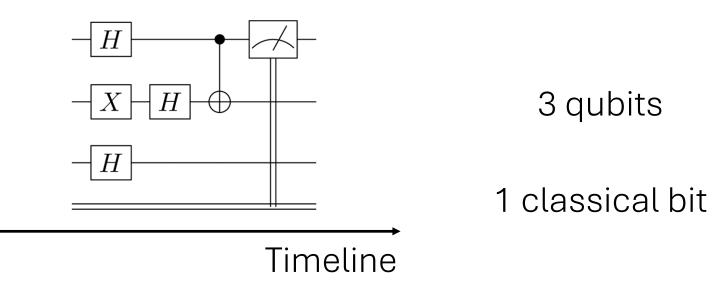
The actual implementation of quantum logic gates are different for every qubit platform, but one thing is for sure: realizing multi-qubit gates are far more demanding compared to single-qubit gates.

Quantum Circuits

To represent a quantum algorithm by using quantum logic gates, we put logic gates in order in the form of quantum circuits.

In the quantum circuits, each qubit is represented as a string along the time axis, and the gates are placed in a successive order to the right.

3 qubits

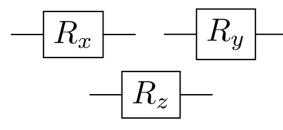


Example of Single-Qubit Gates

Pauli gates

$$-X - \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} - Y - \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} - Z - \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Rotational gates



(Lecture 7, Slide 4 for the explicit representations)

Hadamard gate

Phase gate

 $\pi/8$ gate

$$-H - \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} - S - \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} - T - \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$$

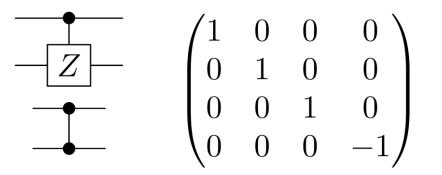
Example of Two-Qubit Gates

Controlled NOT (CNOT, CX) gate

 $(1 \ 0 \ 0 \ 0)$

0

Controlled Z (CZ) gate

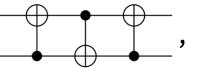


SWAP gate iSWAP gate $\sqrt{\text{SWAP}}$ gate $\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1+i}{2} & \frac{1-i}{2} & 0 \\ 0 & \frac{1-i}{2} & \frac{1+i}{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Universal Gate Set

It is known that any n-qubit logic gate can be expressed by using single-qubit gates and CNOT gates.

For example, a SWAP gate can be decomposed as



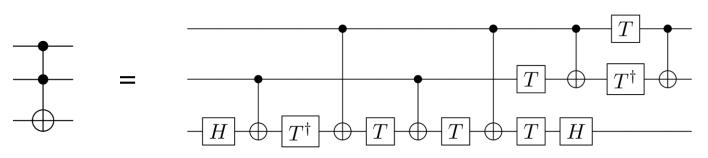
H

which can be represented as H - H - H

because = H and the Hadamard gate is its own

inverse.

Universal Gate Set



Measurement

At the end, the qubit state is measured and the outcome is converted into a classical bit. This is represented by the circuit diagram

For every measurement, the qubit state $|\psi\rangle$ is projected onto a fixed state $|p\rangle$ and the orthogonal state $|q\rangle$.

By repeating the measurement, we obtain the probabilities associated with the two states,

$$P_p = |\langle p | \psi \rangle|^2,$$

$$P_q = |\langle q | \psi \rangle|^2 = 1 - P_p.$$

Measurement

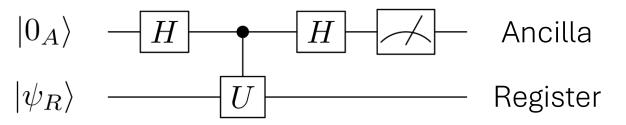
Suppose a qubit is at the state $|\psi\rangle = \alpha |0\rangle + \beta e^{i\theta} |1\rangle$ (α and β real), and we can only make a measurement in the logical basis $\{|0\rangle, |1\rangle\}$.

Question: how can we specify the qubit state? You can use any single-qubit gate you want.

Hadamard Test

An ancilla is an extra qubit that is used to indirectly capture information without performing measurements on the main "register" qubits.

Consider the circuit below:



Just before the measurement of the ancilla, the state of the qubits are

$$|\Psi\rangle = \frac{1}{2}(|0_A\rangle \otimes (\hat{I} + \hat{U}) |\psi_R\rangle + |1_A\rangle \otimes (\hat{I} - \hat{U}) |\psi_R\rangle),$$

whose associated probabilities are $P_0 = |\langle 0_A | \Psi \rangle|^2$ and $P_1 = |\langle 1_A | \Psi \rangle|^2$.

Hadamard Test

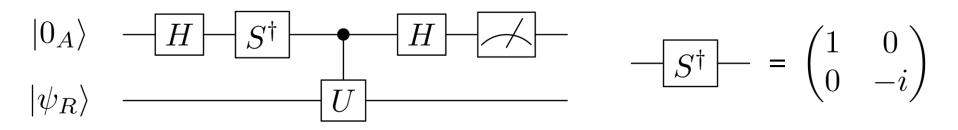
The probabilities are expressed as

$$P_{0} = \frac{1 + \operatorname{Re} \langle \psi | \hat{U} | \psi \rangle}{2}, \quad P_{1} = \frac{1 - \operatorname{Re} \langle \psi | \hat{U} | \psi \rangle}{2},$$

which satisfy

$$P_0 - P_1 = \operatorname{Re} \langle \psi | \hat{U} | \psi \rangle.$$

To obtain the imaginary part $\operatorname{Im} \langle \psi | \hat{U} | \psi \rangle$, we flip the phase of the ancilla qubit with an additional gate:

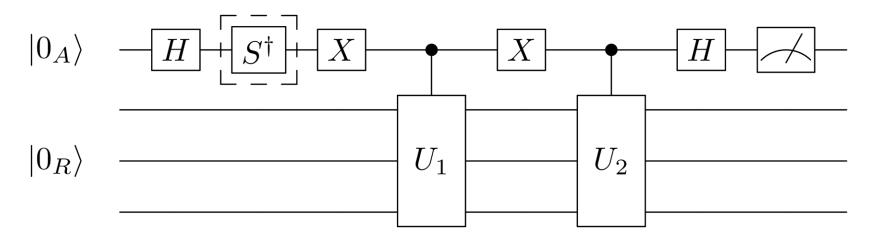


https://en.wikipedia.org/wiki/Hadamard_test

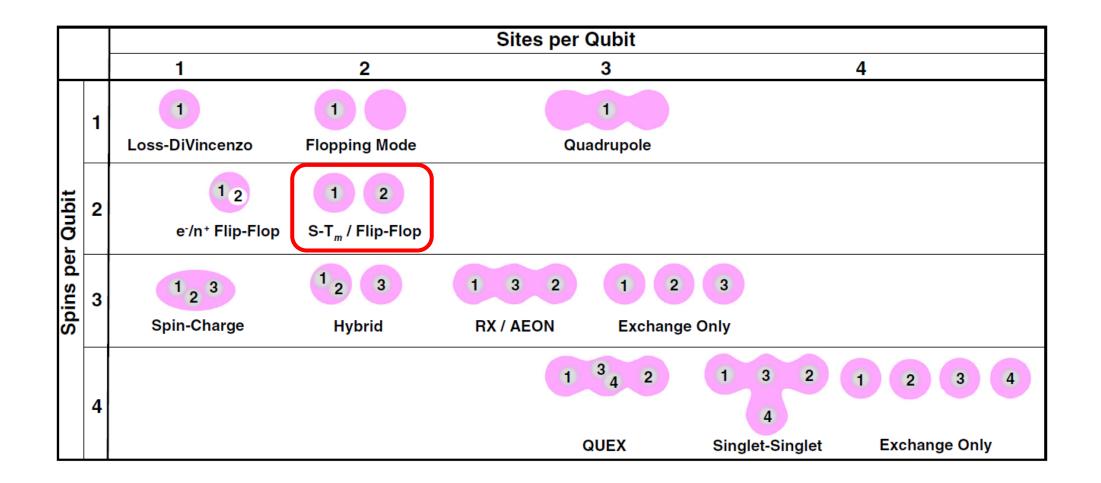
Inner Product between Two States

Suppose we have two different multi-qubit gates which act to the vacuum state as $\hat{U}_1 |0_R\rangle = |\psi_{R1}\rangle$ and $\hat{U}_2 |0_R\rangle = |\psi_{R2}\rangle$.

We can calculate the inner product between the two states $\langle \psi_{R1} | \psi_{R2} \rangle$ without directly gathering information about $|\psi_{R1}\rangle$ and $|\psi_{R2}\rangle$ by using the circuit below:

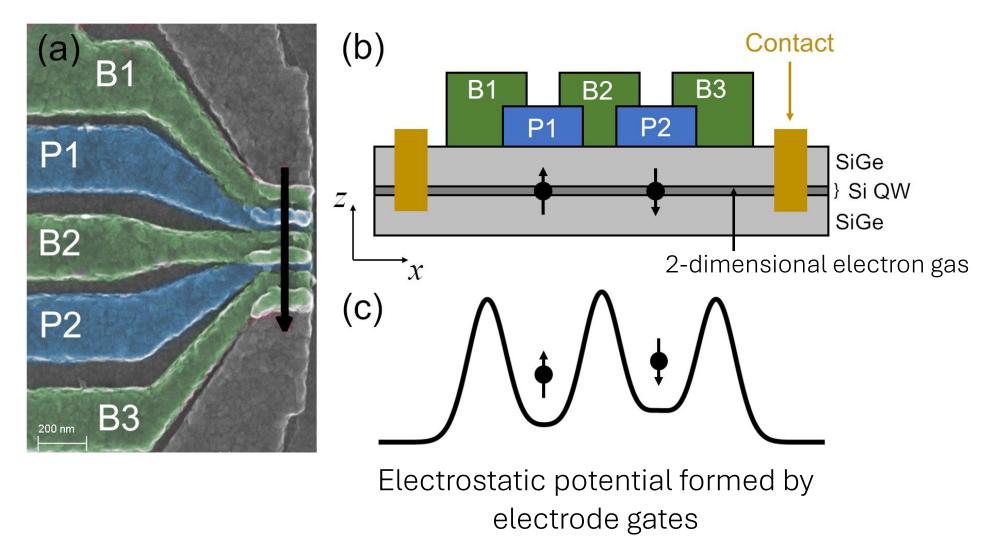


Semiconductor Quantum Dot Qubit



Burkard, G.; Ladd, T. D.; Pan, A.; Nichol, J. M.; Petta, J. R. Rev. Mod. Phys. 95, 025003 (2023) 14

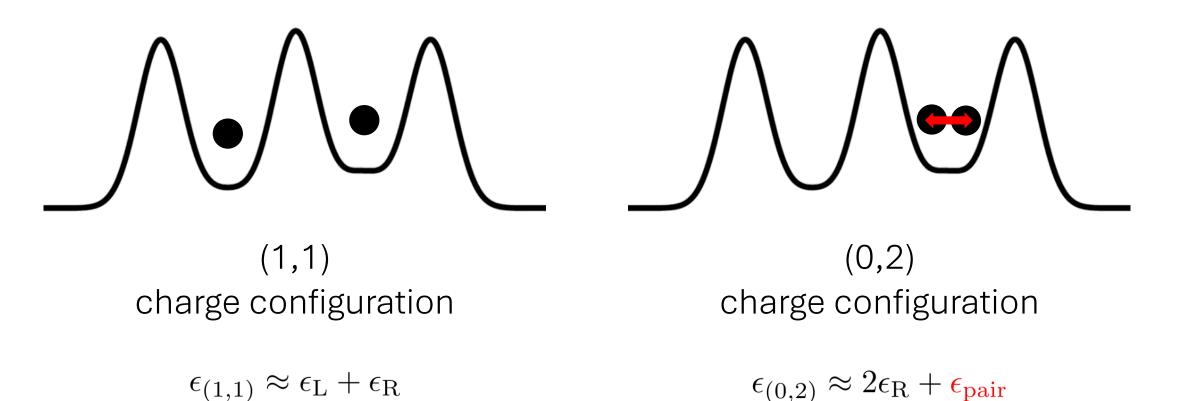
Gate-Defined QDs



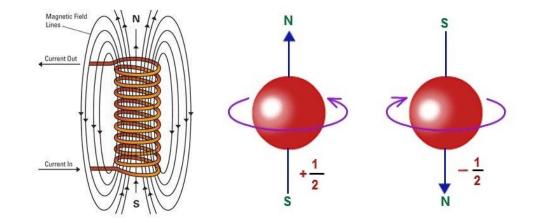
<u>C. W. Kim*</u>, J. M. Nichol, A. N. Jordan, I. Franco*, *PRX Quantum* **2022**, *3*, 040308. 15

Semiconductor Quantum Dot Qubit

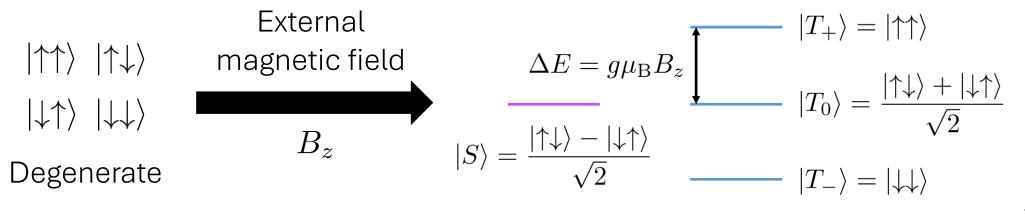
Consider two electrons trapped in a double quantum dot (DQD).



Semiconductor Quantum Dot Qubit



Spin states of two electrons are classified into singlet and triplets:

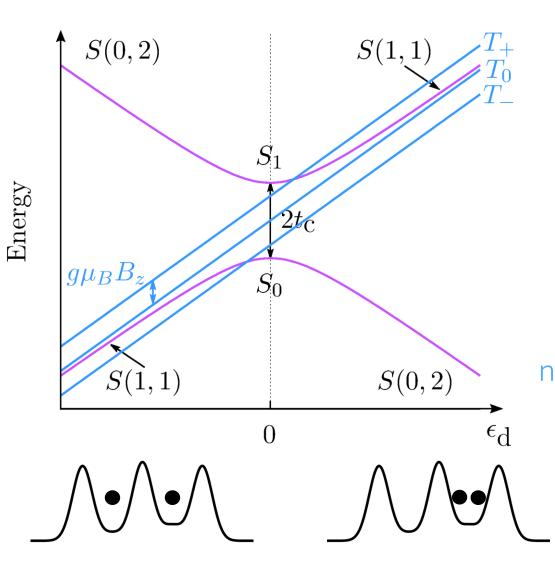


Semiconductor Quantum Dot Qubit $|S(1,1)\rangle = \frac{|\uparrow_{\rm L}\downarrow_{\rm R}\rangle - |\uparrow_{\rm L}\downarrow_{\rm R}\rangle}{\sqrt{2}}$ S(0, 2)S(1, 1)Singlets $|S(0,2)\rangle = |\uparrow_{\mathbf{R}}\downarrow_{\mathbf{R}}\rangle$ Energy $g\mu_B B$, $|T_{+}\rangle = |\uparrow_{\rm L}\uparrow_{\rm R}\rangle \quad |T_{-}\rangle = |\downarrow_{\rm L}\downarrow_{\rm R}\rangle$ Triplets $|T_0\rangle = \frac{|\uparrow_{\rm L}\downarrow_{\rm R}\rangle + |\uparrow_{\rm L}\downarrow_{\rm R}\rangle}{\sqrt{2}}$ $S(\hat{1},1)$ S(0,2) $\epsilon_{d} = \epsilon_{(1,1)} - \epsilon_{(0,2)}$ 0 $(\epsilon_{\rm L} + \epsilon_{\rm R}) - (2\epsilon_{\rm R} + \epsilon_{\rm pair})$

18

전남대학교 화학과

Semiconductor Quantum Dot Qubit



Singlets	$ S(1,1)\rangle = \frac{ \uparrow_{\rm L}\downarrow_{\rm R}\rangle - \uparrow_{\rm L}\downarrow_{\rm R}\rangle}{\sqrt{2}}$
	$ S(0,2)\rangle = \uparrow_{\mathrm{R}}\downarrow_{\mathrm{R}}\rangle$

Hybridize via tunnel coupling t_c to yield $|S_0\rangle$ and $|S_1\rangle$ (spin-charge hybridization)

$$\begin{array}{c} |T_{+}\rangle = |\uparrow_{\rm L}\uparrow_{\rm R}\rangle \quad |T_{-}\rangle = |\downarrow_{\rm L}\downarrow_{\rm R}\rangle \\ \text{o hybridization} \quad |T_{0}\rangle = \frac{|\uparrow_{\rm L}\downarrow_{\rm R}\rangle + |\uparrow_{\rm L}\downarrow_{\rm R}\rangle}{\sqrt{2}} \end{array}$$

Semiconductor Quantum Dot Qubit

Energy

