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Motlvation

Up to now, we applied the variational principle to numerically solve the
Schrodinger equations for H,” and conjugated molecules.

However, careful thinking reveals that the solutions were always one-
electron wavefunctions (orbitals), whose dimensionality is 3.

In contrast, almost all atoms and molecules involve multiple electrons,
whose spatial wavefunctions must have the dimensionality of

3 X (number of electrons).

The question is: how do we find such multielectron wavefunctions of
real atoms and molecules?
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Review: Hydrogen-Like Atom

One electron is electronically bound to the nucleus whose charge is +Ze.
ex) H, Hel Li*t...

The solutions of the Schrodinger equations were hydrogen-like
orbitals, which are defined in the 3-dimensional space.

TABLE 6.2 Real Hydrogenlike Wave Functions
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Electron Spin

An electron has a spin of 1/2, and responds to the external magnetic
fleld in two different ways based on its alignment.

The spin only naturally arises from relativistic theory of quantum
mechanics, which is not included in the Schrodinger equation.

Let us therefore take this property as granted and not bother its origin
any further.
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Spin Orbitals

T
S

T

ne two different spin states can be distinguished by multiplying the
nin wavefunction to the spatial orbitals {1s, 2s, 2p, - - - }.

Ne convention is using a(w) and B(w) for up- and down- spins, which

yields two different spin orbitals from one spatial orbital. For example:

| |

1s 1s
Is(z,y, z)o(w) = 1sa(z,y, z, w) 1s(z,y, z)B(w) = 1sf(z, y, 2, w)

The spin wavefunctions satisfy the orthonormality relations

[ewiatw)do =1, [ sw)sw)de =1, [ a(w)sw) dw=o.

tot
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The Helium Atom

An Helium atom consists one nucleus and two electrons.

(1,91, 21) .\‘ ~~~~~~ 719
r \\\ ~~~~~~~~~~~~~ —E€
1 \\\ ______—::' (72, Y2, 22)
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Under Born-Oppenheimer approximation, the Hamiltonian is

- P S 2¢? 2¢? e’
H —_ Vl — VQ - — —|_ .

Qme 2me 471'607“1 47’(’60’)"2 471'6()7“12

|s there any systematic way to obtain numerical solutions
(6-dimensional electronic wavefunctions) for this Hamiltonian?

JH
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Neglecting Electron-Electron Interaction

If we neglect the interaction between the two electrons, the total
Hamiltonian can be split into two hydrogen-like problems with Z = 2,

. he o he o 2¢2 2¢? 2
A=t V2o w25 =% X5
2M 2Me Admegry  4dmegrs %g}m\
— ﬁl + PAIQ)

and the solution will be products of the solutions for individual
Schrodinger equations, as we have already seen in Lecture 3:

ﬁlgb(l) — E¢(1)7 {é} — {18&, 18/67 28057 28/67 2p057 e }7
Hyp(2) = Ed(2), (spin orbitals of He* ion)

where we introduced the abbreviated notation (x;, y;, z;, w;) — (j).
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Neglecting Electron-Electron Interaction

Based on what we have learned, some multielectron solutions will

be !
Is l 2s 1s [ L 2s
P1(1,2) = 1sa(1)1s6(2), Y2(1,2) = 1sa(1)2s(2),
Fy = 2F Fo = F1s + Fos
1s [ L 25 Is l L 25
¥3(1,2) = 1sa(1)2s5(2), Ya(l,2) = 1sB(1)2s5(2).
E3 = F1s + Eog Fy = E1s + Eos

These product wavefunctions are called Hartree products.

|OF
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Variational Principle...?

The Hartree products are not the solutions for He atom due to the
neglected electron-electron interaction:

N hQ N hQ N 2 2 9 2
H=— -l =
2m 2m 471'60“)“1 471'607“2

Then, the natural next step seems to be applying the variational principle
to find the solutions as the linear combination of the Hartree products:

U = Z Cjwj(lg 2)
J

However, as we will see in the next few slides, this is not appropriate
due to an intrinsic property of the spin.

o
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Bosons and Fermions

Microscopic quantum particles can be classified into two categories
pased on their spins:

B0sons which have integer spin, ex) photon, a-particle
-ermions which have half-integer spin. ex) electron, proton, neutron

The wavefunction for bosons and fermions satisfy the characteristic
wavefunction symmetry upon the exchange of two particles:

P(1,2),
—(2,1).

~ermions naturally satisfy Pauli’s exclusion principle: #(1,1) = 0.

Bosons have symmetric wavefunctions: P (1,2)
~ermions have antisymmetric wavefunctions: (1, 2)

10
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Slater Determinant

The Hartree products does not satisfy the antisymmetry. For example:
Ibl(lv 2) — 1804(1)18,6(2) — ¢1(27 1) — 18@(2)185(1) 7£ _wl(la 2)7
and therefore they cannot be used to construct the wavefunction.

Nevertheless, we can systematically construct antisymmetric
multielectron wavefunction by using the property of the determinant.

Consider
1 sa(l) 1B Lo o
G1(1,2) = 5 [20) 2000 = 5 [1sa(1)156(2) - 1551 1sa(2)]
then we have
~ 1 Isa(2) 1sB(2)] 1 . ““ (1)1 _ 7
() = 5 el 00| = 5 18 1sa(2) - sa(1)155(2)] =~ (1.2),
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Slater Determinant

The antisymmetric property was not a coincidence, as exchange of
two electron swaps the two rows of the determinant:

~ 1 |Isa(l) 1sB(1)] 1 |1sa(2) 1sB(2)| -
¥n(1,2) = V2 [1sa(2) 1sﬁ(2)| T V2 [1sa(1) 155(1)‘ =12, 1),
Such wavefunctions are called Slater determinants. We can generalize
this conceptto N electrons in N spin orbitals {¢1, ¢2, -+, Odn},
¢1(1)  @2(1) -+ on(1)
B2 N) = 1 $1(2)  ¢2(2) -+ on(2)
? ? ? T \/ﬁ )
p1(N)  ¢2(N) - on(N)

where 1/Vv N! is the normalization factor.
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Solving the Multielectron Schrodinger Equation

We can now apply the variational principle by using the Slater
determinants as basis functions for multielectron Schrodinger equation.
(Carefully read this sentence, as this is a very important leap in thinking)

The number of Slater determinants is determined by the number of
orbitals (one-electron wavefunction) and the number of electrons.

For M spin orbitals and N electrons, the number of all possible Slater

determinants are A

NUY(M — N)!’
For a He atom with the orbitals {1sa, 1s5}, we have only ,Cy = 1 possible
determinant, which is not enough to construct accurate solutions.

MCON =
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Solving the Multielectron Schrodinger Equation

Extending the orbital set to {1sa, 1s8, 2sa, 2s8} leads to ,Cy = 6 possible
determinants,

L A I

7 1 |1se(1) lsﬁ(l)‘ J 1 |Ise(1) 28@(1)‘ J 1 |1sa(1) 285(1)‘
P2 [1sa(2)  1sB(2) 7 /2 [1sa(2)  2sa(2) 3 5 |1sa(2)  2s6(2)
1s l [ 28 1s l l 28 1s H 28
7 _ 1 1sp(1) 28@(1)‘ 7 _ 1 [1sp(1) 286(1)‘ J _ 1 ]2sa(1) 255(1)‘
YT /2 |1s8(2)  2sa(2) ° T /2 |1sB(2)  2s8(2) ° T V2 25a(2) 28B(2)

which are orthonormal due to the orthonormality of 1s and 2s orbitals.
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Solving the Multielectron Schrodinger Equation
ex) Various relations for 1 and v,

b = —=[1s(Da(1)15(2)5(2) — 15(1)8(1)15(2)a(2)]

Py = [1s(1)a(1)2s(2)a(2) — 25(1)a(1)1s(2)a(2)]

Sl Nl

Eigenfunction:

(Hy + Ha)y = %[(Hl + Hy)1s(1)e(1)15(2)3(2) — (Hy + H2)1s(1)8(1)1s(2)(2)]
Page / 1 - . .
— E[Hl 1s(1)a(1)1s(2)5(2) + 1s(1)a(1)Ho1s(2)3(2) H11s(1) = Fy41s(1)

— Hi1s(1)B(1)1s(2)a(2) — 15(1)8(1) Ho15(2)a(2)] Hy1s(2) = E151s(2)
2E1ls

=7 [1s(1)er(1)1(2)5(2) — 1s(1)5(1)1s(2)c(2)]

= 2B,

19
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Solving the Multielectron Schrodinger Equation

ex) Various relations for 1 and

Eigenfunction(continued)

(Hy + Ha)ips = %[(ﬁl + Hy)1s(1)a(1)2s(2)a(2) — (H1 + H2)2s(1)o(1)1s(2)c(2)]
— %[ﬁlls(l)a(l)Qs(Q)@(Q) + 15(1)a(1) Ho25(2)r(2) 1?1 1s(1) = E1s1s(1)
~ N H218(2) = E1818(2)
— H12s(1)a(1)1s(2)a(2) — 1s(1)a(1)Ho15(2)a(2)] 11,25(1) = E.25(1)
= ST 1s(Da(D)12)8(2) — ()81 (2)] 1,25(2) = E»25(2)

~

= (E1s + Eas)1o

16
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Solving the Multielectron Schrodinger Equation

ex) Various relations for 1 and
Orthogonality

Spatial orthonormality
[tz =3 ] ] 15(1)a(1)1s(2)8(2) - 1s(1)B1)1s(2)a(2)]" | |
Spin orthonormality
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Solving the Multielectron Schrodinger Equation

If we apply the variational prmmple the overlap integral is

Jk—/%

due to the orthonormality.

,2) d(1,2) =

1k

Under such a condition, the secular equation reduces to the form of
eigenvalue equation which only have E in the diagonal elements:

H{, — F
Hoy

He1

Hio
Hoy — F

Hgo

Hig
Hog

Hes — E

which can be conveniently solved by computer algorithms.



A L—I-[_H'c'a'l-jl_ §|.

— -1

_|OF

-l

a 2 HE

Solving the Multielectron Schrodinger Equation

By solving the secular equation, we can obtain the six solutions
6
U (1,2) = ) cnithi(1,2).
j=1

These are the most accurate solutions within our set of spin orbitals
{1sa, 188, 2sa, 2s8}, but their accuracy would be still quite crude.

To increase the accuracy, we can either

1. Use a larger set of orbitals (which increases the computational cost)

2. Use orbitals better than hydrogen-like orbitals (the problem is how)
3. Do both.

tot
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Configuration Interaction

The fact that each variational solution is a combination of multiple
electron configurations

6
U (1,2) = ) cnithi(1,2).
j=1

means that the electrons exist as a mixture of many configurations.
Such a mixing is called configuration interaction (Cl).

This also means that the Aufbau principle has a fundamental
limitation, as it always represents the ground state of the atoms and
molecules as a single electron configuration.

As we will see in the next lectures, Cl poses a significant problem to
accurate calculation of atoms and molecules.

tot
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Extension to Molecules

Example: H, .
Electron 2 R ;i : distance between nucleus J
r2 e and nucleus K
Electron1 _.-===""_ T .
o P ,"R R i, : distance between nucleus J
T ><"’ " 22
Ryy " 5 Roy and electron &
ST Rig Tl ] _ . .
e T'jk . distance between electron j
Nucleus 1 @~ ~~~~~"7"~~~—========---==--
R Nucleus 2 and electron k
Electron Electron-nuclear Electron-electron Nuclear-nuclear
kinetic energy interaction Interaction interaction
. h? e [ 1 1 1 e? 1 e? 1
H=-——(Vi+V3) - +=—Ft=—+=—1}+ -
Qme 471'60 Rll R12 R21 R22 47’(’60 192 47’(’60 R12
2 2 1 2
SR B N = DRI RS =D 3)
' 47T€0J 1 k= 1R”~C 47T€0 i1 ke | JE 47T€0J 1 k=1 8K 21
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Extension to Molecules

By generalizing the Hamiltonian to arbitrary molecule composed of N,
nuclei and Ngee electrons, we get

Nnu Nnu Ne ec Ne ec —1 Nnuc J_l
. R € ¢ Z; 2 K 1 e? Z 375
B s 2V e 22 2 R T ey 2 2y T Rk
m e e T e
=1 0 j=1 k=1 "k 0 =1k k 0 j=1 k=1 K

where Z; is the number of protons in the J-th nucleus.

In principle, the Schrodinger equation for this Hamiltonian can be
solved in the similar way to what we did for an He atom:

1. Choose appropriate set of spin orbitals for each atom.
2. Construct Slater determinants by using N Orbitals each time.
3. Apply the variational principle by solving the secular equation.



