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Motlvation

There are many systems for which we cannot find exact analytical
solutions for Schrodinger equation. This problem arises even when the
analytically solvable potentials are only slightly modified:

ex
) 1

- o Viz) = 5/{:1;2

\ / V'(z) =V (z) +~vyz*

For chemical systems, any atoms or molecules with more than two
electrons cannot be exactly solved.

In such cases, we need to find approximate solutions.
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Approximate Solutions for Schrodinger Equation

There are two approaches to find approximate solutions:
perturbation theory and variational method.

The perturbation theory is useful when the Hamiltonian can be
expressed as o ) ) )

H:HO—I—H1 with H() > Hl,
and we know the solution for Hy. This is useful for obtaining approximate
analytical solutions, but quickly loses its utility as H; becomes larger.

n contrast, the variational method can be applied to an arbitrary
Hamiltonian to yield numerical solutions.

Moreover, the accuracy of the solution can be systematically increased.
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The Variational Principle

Theorem: Suppose we want to solve the Schrodinger eqn, Hy = Eq .
If we denote (unknown) ground state energy as E4, the inequality

/ o* Ho dT

/¢¢m -

IS satisfied for an arbitrary wavefunction ¢, where the equality only holds
when ¢ Is exactly proportional to the true ground state eigenfunction ;.

Recall that (chapter 1, slide 7)

f(...>d,r

Indicates integrating the function in (---) over all space that it is defined.
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The Variational Principle

Proof: We start by normalizing ¢ by dividing by the normalization

constant:
1/2
(o)
/gb’*(p’ dr = 1.

As ¢'is a wavefunction, it can be expressed by a linear combination of
the normalized solutions {v,}, even though we do not know them:

¢I = ch¢j with Cj = /¢;q§, df;‘7 Z ‘Cj|2 — 1.
Jj=1 j=1

which satisfies
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The Variational Principle

We can now insert this expansion of ¢’ in the original expression

(Hyw, = Exty)
/gb’*ﬁgb’ dr=>) Y c;ckfw;ﬁhpk dr=Y > cjcpky /w;fqpk dr
jzlkzl jzlkzl
= > > GaBEd =) |¢PE; > ) |¢j[PEr = Ex.
(orthonormality) j=1 k=1 j=1 j=1
(B > Eh)

Finally, converting back from ¢’ to ¢ gives

f¢f*ﬁ¢’deE1 ) fqmd’r > E.
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Optimizing the Trial Function

We can therefore find an approximate numerical solution by
minimizing the quantity

as ¢ will become closer to the true solution ¥ as E approaches Ejy.

Therefore, we can assume a reasonable trial function with adjustable
arameters
P ¢:¢(@,b,(ﬁ"‘),

which makes the energy expectation value also a function of the

parameters
E = E(a,b,c---).
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Optimizing the Trial Function

Then, we can make the trial function as close as possible to the true
ground state wavefunction by finding the parameters that minimize E.

The necessary condition for such situation is that the partial derivatives
should vanish altogether,
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The most widely used form of the trial function is a linear combination
of basis functions {¢;} = {¢1, ¢2, =+, o},

N
6= di¢;,
=1

where we will assume both {¢,} and the coefficients {d; } to be real.
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Optimizing the Trial Function

ex) For a guantum harmonic oscillator, pretend that we do not know
the exact solution and assume a trial function of the form

b(z) = Ae™*

Find the value of a that minimizes E and confirm that the solution
indeed makes ¢(z) the exact ground state wavefunction.
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Linear Trial Function

For a linear trial function,

/gbﬁqbd’r:E/gbzd'r,

N N
> D d; dk/ngHgbde—EZZd dk/qﬁjqbkd'r

j=1 k=1 j=1 k=1
Recall that {¢;} are not the eigenfunctions of H, and we also did not
assume any orthonormality between {¢;}. We now introduce the notation

/ bsn dr = S, / b o dr — Hyp,

which converts the original expression to

N N N N
Y didpHj =EY» Y didpSir.

j=1k=1 j=1k=1
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Linear Trial Function

Our goal is to find the coefficients {d;} that minimize E. To do this, we

see F as a function of {d;}, and find the conditions for the minimum
OF
ad,

Differentiating the last expression in the previous slide by d; leads to

N
2) djHy; = adl ZZd dijkJrQEZd S1j,
j=1

1=1 k=1

= 0.

where we have used the relation
Sik = Skj, Hjr = Hgj.

Note the factor 2 which comes from both j =1 and k = 1.
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Linear Trial Function

Rearranging the equation gives
N

> (Hyj — ESyj)d; = 0.

j=1
By differentiating also with d», ds, --- dn, wWe get a set of N linear
simultaneous equations

N
Y (Hnj — ESnj)dj =0, n=1,2 - N.
j=1
We can easily find the solution of d; =ds = --- =dy = 0, but it means

N
=) ¢; =0,
j=1

which is trivial and therefore not interesting at all.
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Secular Equation

We have learned that the condition for a nontrivial solution IS

Hy, — ES1
Hoy — ESo

His — ESio
Hoo — E S

Hny — ESy1 Hnyo — ESno

Hin — ESiN
Hon — ESon
Hyy — ESNN

which Is called secular equation, while the determinant is called

secular determinant.

The secular equation is an N-th order polynomial equation of E, and
therefore solving it leads to NV values of E with possible degeneracy.

Finally, we plug E1, Es, --

-, By Inthe original simultaneous equation
and solve for {d;} to construct the solutions ¢1, ¢2, ---

, ON.
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Example: H,”

H," is the simplest molecular ion which consists of two protons and one
electron.

,,\(fc, Y, 2)
TA o Tt B
(Xa,Ya, Za) @mmmmmmmmmmmmmmmmmmmmmmonae- @ (X5, Vs, Zs)
+e R te

We start by applying Born-Oppenheimer approximation, which assumes
that the nuclel are fixed point charges.

This reflects the fact that the nuclel are much heavier than the electron,
and therefore can be treated as static classical particles.

As a result, the three-particle problem reduces to an one-particle
problem only for the electron.
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Example: H,”

The Hamiltonian operator for the electron is

A h° 0? 0? 0? e? e? e?
H=- R — + ,
2me \ O0x2  Oy? 022 Aregra  4dmegrg  4AmegR
@2 (Laplacian)

where

ra(z,y,2) = V(@ — Xa)2 + (y — Ya)? + (2 — Za)?,
re(z,y,2) =/ (x — Xg)?2 + (y — Y8)? + (2 — Zp)2.

It is not possible to find analytical solutions of the Schrodinger equation
for such a complicated Hamiltonian, so we need to solve it numerically by
using the variational principle.

The question is: what are the good basis functions?
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Example: H,”

A good starting point will be the hydrogen orbitals centered at the
position of individual nucleil.

The minimal basis set is the smallest basis set that suits the given system,
which are the two 1s orbitals

1\ 12 1\ /2
Isa(z,y, 2) = (—) e_""A/a, Isp(x,y,2) = (—) e TB/O,

mTad mTad

Note that ra and rg are functions of z, y, and z. As we have two basis
functions, the secular determinant is a 2-by-2 matrix and

Hapn — ESan Hap — ESAB

= (.
Hpa — ESpa  Hpp — ESBB
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Example: H,”

The integrals are
Saa =5 =1, SaB = SBa =5,
Hapn = Hpp = Ehis+J, Hap = Hpa = E1:5 + K,

where FEi4 IS the 1s orbital energy of a single hydrogen atom and S, J,
and K are defined as

S = / / / Isalsp dx dy dz, (overlap integral)

e2 [ [ [ 1 1
J = — 1 — — — |1sa dx dy dz, '
dreq /OO /OO /OO SA(TB R) SA Ax Ay az (Coulomb integral)

2 o) o.¢) o0 1 1 .
K = — ‘ / / Isa ( — ) Isg dx dy dz. (Exchange integral)
Amen J oo J—oo J— oo ra R 17
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Example: H,”

As a result, the secular equation becomes
Evw+J—E  ES+K-ES|_ |
.S+ K —FES Ew+J—-FE | 7

Expanding the determinant gives a 2"9-order equation on E,
(Fis+J—E)* —(BE,S+K —ES)?=0.

which yields two solutions

J+ K J—K
E_ = Ey, .
1+87 s T3

E—I— = B +

Note that the values of S, J, and K depend on the internuclear distance
R=+/(XA—Xp)2+ (Ya—Yp)2+ (Za — Zp)2.

1%
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Example: H,”

We still need to find the wavefunctions. This can be done by solving

the simultaneous equation constructed from the variational principle
N

Y (Hnj — ESpj)d; =0,

J=1 Saa = SpB = 1,

which becomes

o Sas = SBa = 5,
(HAA — ESAA)dA + (HAB o ESAB)dB o 0’ Haan = Hpp = E1s + J,

(Hpa — ESBA)da + (Hpp — ESBB)dB = 0,  Hap=Hps = ELS+ K
in our system. Inserting £ = E, and solving for da and dg gives

¢+ — \/2(1 n 8) (1SA + 1SB)7

while for £ = E_ we have

Y = o) (Isp — 1sp).

1%
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McQuarrie, D. A.; Simon, J. D. Physical Chemistry: a Molecular Approach, Ch. 9 20
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Shape of Molecular Orbital

Wi o Isa + 1sp o W_ o 1sp — 1sp
ol e
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McQuarrie, D. A.; Simon, J. D. Physical Chemistry: a Molecular Approach, Ch. 9 21



Application of the variational principle to the two 1s atomic orbitals
led to bonding and antibonding molecular orbitals.

The bonding orbital has relatively large electron density between the
nuclei, which stabilizes H,"when R ~ R..

The antibonding orbital has a nodal plain between the nuclei, which
destabilizes H,". Generally, a node indicates that the wavefunction

tot

undergo a sharp change near there, which increases the kinetic energy.

Although we have used the minimal basis of two 1s orbitals, inclusion
of the other orbitals (2s, 2p...) will lead to more accurate molecular
orbitals, which will be reflected in lower energy expectation values.
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