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History of Science: Classical Physics

The pre-modern physics can be roughly divided into two fields:

Newton’s theory of mechanics, which describes the movement of
particles and objects based on equations of motion.

Maxwell’s theory of electromagnetism, which describes various
phenomena involving current, magnet, and electromagnetic waves.

Development of these two fields was already finished in the 19t
century, and countless number of applications have been made
possible due to the predictive power of the theories.

ex) mechanical and electrical engineering



Blackbody Radiation

Heated matter emits energy in the form of electromagnetic waves
(light). This is modeled by blackbody radiation.

The distribution of the wavelength intensity depends on temperature,
which was carefully studied for application in metallurgy.

However, the prediction of classical electromagnetism did not match
the experiment, especially towards the high frequency.
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Blackbody Radiation

Spectral radiance (KW - sr1 - m=2 . nm™?)
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Planck’s Quantization

Planck proposed that, when the light is emitted, it can only carry
energy which is multiple of hv- the energy of the light is quantized.

Based on this theory, Planck could show that the blackbody radiation

follows
2hc? 1

BMNT) =
AT) N> exp(he/AkgT) — 1’

which perfectly described the experimental spectra.

This implied that the light can be thought as individual particles
carrying the energy of hv, which was later called wave-particle duality.
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de Broglie’s Matter Wave

Soon after the Planck proposed his theory, Einstein arrived at the
conclusion that the light energy £ and its momentum p are related by

E = pc,

which can be combined with E = he/ X to give

A= —.
p

Based on this result, de Broglie made a bold claim: if light can behave

like particle, matter can also behave like wave whose wavelength is
h
N= —

)
Tmuv

as the momentum of particle of mass m and velocity v is p = mw.
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The Schrodinger Wave Equation

Schrodinger constructed the equation of motion for the “matter
waves” by combining the classical mechanics and wave equation:

0 he 92
zhalll(ac,t) =5 5.2

This is the famous Schrodinger equation, for 1-dimensional system.

U(x,t) 4+ V(x, t)V(x,t).

It can be compactly written as

ih%\lf(:v, t) = [K + V(z,t)|U(x,t) = H(z,t)U(z, 1),

Where K and V (x,t) are operators for kinetic and potential energy.
We have also defined the Hamiltonian operator for the total energy,

H(z,t) =K + V(x,t).

|OF

tot



Z{LbC s shstat AR

-l

-1 -1

Solving the Schrodinger Equation

In this course, we will work with potentials that do not change with
time. As a result, we havea

iha\lf(x, t) = H(x)¥(x,t).

This can be solved by separation of variables, where we assume the
solution of
W(z,t) = ¥(x)T'(1).

Inserting this solution to the original equation and rearranging leads
to L1 dT(t) 1 -
- — constant
th(t) yr w(x)H(:c)w(x) E )

This course will mostly focus on the time-independent part

H(z)y(z) = E(x).




JH
m
fot

1%

2L st B}t 2

— L -1

Solving the Schrodinger Equation

The time-independent part of the Schrodinger equation

H(z)p(z) = Ey(x),
IS in the form of eigenvalue equation. Solving this equation usually leads
to infinitely many solutions {.,(x)} and energy eigenvalues {E,, }.

For each set of solution and eigenvalue, the time part can be solved

as: LdT,(t) B 1Bt
ih . E,T,t) — T,(t) =exp ( - )
The general solution can now be constructed as
1Bt
Ve, = Yot @n0 = Y e (- )
j J
where{c;}are complex-valued coefficients.
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Solving the Schrodinger Equation

ex) Show that the solution

U(z,t) = ch%(w) eXp ( -

J

satisfies the Schrodinger equation

L 0 -
ma\lf(x,t) = H(z)V(x,t).
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Postulates of Quantum Mechanics

There are different interpretations of guantum mechanics, but the most
commonly accepted sets of basic rules (postulates) are as follows.

- The state of a quantum system is completely specified by its
wavefunction ¥(x,t).

- The wavefunction evolves by following the Schrodinger equation.

- Jo every physical observable, there is a corresponding Hermitian
operator.

ex) & (position), —ih%(momentum), H (energy) -

- When a physical observable A is measured, the outcome is always
an eigenvalue of the equation

Ay () = Aptpy(2).
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Postulates of Quantum Mechanics

- |f the wavefunction was in a superposition state

P(z) =Y cxtbr(a)
k
before the measurement, and an eigenvalue A, is measured as

an outcome, it means that the wavefunction has been
iImmediately collapsed into ¥, (x) after the measurement. The
probability of measuring A, is proportional to |c.|*

- For a general wavefunction, the average (expectation value) of the
measurement can be calculated as

_ v (@) Ag(x) da
J (@) () do

(A)
12
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Postulates of Quantum Mechanics

ex) Show that eigenvalues of a Hermitian operator are always real.
Recall that a Hermitian operator A satisfies

/f*flng: (/g*flfd’r>*.
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Normalization

To make the calculations more compact, we will always assume that the
wavefunction is normalized, which means it satisfies

/_ (@) dz = 1.

Even when this condition is not met, we can always multiply a
normalization factor N to get a new scaled wavefunction

P(z) = Ny(z).

It will not be difficult to prove that ¢ (z) satisfies the normalization

condition if = 19
Nz(] |w(:c>2dx) |
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Orthonormality of the Eigenfunctions

For a Hermitian operator 4, the normalized solution of the eigenvalue

eqguation R
Ap(x) = Arthr ()

satisfies the orthonormality
| v do =i

Then, for a normalized superposition state ¥ (z) = chk(m),
the coefficients {¢;} can be found by k

ov= [ bt de

and satisfies » |cx> =1.
k
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Orthonormality of the Eigenfunctions

ex) Show that the following two functions are orthonormal:

1/4 1/4
Yo(z) = (l> e /2, Y1 () = (é> ze % /2,

s 74

You can use the following integration formulae:

OO e—oza;' dr = / 2 —aa: dZU—— o
V 20
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Probabilistic Interpretation of the Wavefunction

The probabilities for all instances must be real and add up to unity.

For a normalized superposition state, |cx|* can be directly interpreted
as the probability to measure the k-th eigenvalue as we now have

Z |Ck|2 =1,
k

and the meaning of the expectation value formula should now become
clear: > A
) = [ o @Av() =3 e A
oo -

The absolute square of the wavefunction | (z)|* can be also interpreted
as the probability for a particle to exist at z, as

| WP =1
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