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Note: either C or python language can be used for dealing with the exercises that require programming.
For C language, complex numbers can be incorporated in the calculations as illustrated in complex.c.
Alternatively, it is also possible to rely on external tools such as Intel® Math Kernel Library.

1 Time-Dependent Schrödinger Equation

Let us consider a quantum problem involving a single coordinate x. The time-dependent Schrödinger
equation (TDSE) is

iℏ
∂

∂t
Ψ(x, t) = Ĥ(x, t)Ψ(x, t), (1)

where Ψ(x, t) is the wavefunction and Ĥ(x, t) the Hamiltonian of the system

Ĥ(x, t) = − ℏ2

2m

d2

dx2
+ V (x, t). (2)

For now, we assume that the Hamiltonian is independent on time for the sake of simplicity. Equation (1)
can then be solved by separation of variables, which assumes that the wavefunction can be factorized into
the spatial and temporal components,

Ψ(x, t) = ψ(x)T (t), (3)

which decouples Eq. (1) into two ordinary differential equations,

Ĥ(x)ψ(x) = ϵψ(x), (4a)

iℏ
d

dt
T (t) = ϵT (t), (4b)

where ϵ is a constant that acts as the energy.

Exercise 1-1. Derive Eq. (4).

Eq. (4a) is the time-independent Schödinger equation (TISE) which we have encountered many times in the
undergraduate physical chemistry courses. If we can find its solution wavefunctions {ψn(x)} and energies
{En}, we can use them to solve Eq. (4b),

T (t) = e−iωnt, (5)

where ωn = ϵn/ℏ. We can now construct a complete set of time-dependent solutions for the TDSE,

Ψn(x, t) = ψn(x)e
−iωnt. (6)

If we specify the initial wavefunction at t = 0 as

Ψ(x, 0) =
∑
n

cnψn(x), (7)
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one can straightforwardly obtain the solution at arbitrary time t,

Ψ(x, t) =
∑
n

cnψn(x)e
−iωnt. (8)

Exercise 1-2. Plug Eq. (8) in Eq. (1) and check the validity of the solution. How can we calculate the
coefficients {cn}?

2 Two-Level Quantum System

When the solution wavefunctions of TISE {ψn(x)} are not immediately available, a general way to solve
Eq. (1) is introduction of a basis set. Suppose we are trying to describe the dynamics by using two basis
functions ϕ1(x) and ϕ2(x) which satisfy the orthonormality,∫ ∞

−∞
ϕm(x)ϕn(x) dx = δmn, (9)

where δmn is the Kronecker delta which is unity when m = n and zero when m ̸= n. We can now represent
the wavefunction at an arbitrary time t as

Ψ(x, t) = c1(t)ϕ1(x) + c2(t)ϕ2(x). (10)

Inserting Eq. (10) in the TDSE [Eq. (1)] leads to the matrix equation for the coefficients

iℏ
d

dt

(
c1(t)
c2(t)

)
=

(
ϵ1 V
V ϵ2

)(
c1(t)
c2(t)

)
. (11)

Exercise 2-1. Derive Eq. (11) and express the matrix elements ϵ1, ϵ2 and V in terms of Ĥ(x), ϕ1(x) and
ϕ2(x).

Equation (11) can be re-written as

iℏ
d

dt
Ψ⃗(t) = ĤΨ⃗(t), (12)

where Ψ⃗(t) and Ĥ are

Ψ⃗(t) =

(
c1(t)
c2(t)

)
, Ĥ =

(
ϵ1 V
V ϵ2

)
. (13)

Equations (12) and (13) are called the “linear algebraic representation” of the TDSE. Note that the wave-

function is now represented as the coefficient vector Ψ⃗(t), and all of the information about the Hamiltonian
is included in the matrix Ĥ. Note that we must keep in mind that we are using ϕ1(x) and ϕ2(x) as the

basis functions, as the elements of Ψ⃗(t) and Ĥ become different upon the change of basis.

An exact solution of Eq. (12) can be obtained by diagonalizing the Hamiltonian matrix Ĥ, which is
equivalent to solving the TISE:

ϵ+ = ϵ̄+∆ϵ, ψ+(x) = (cos θ)ϕ1(x) + (sin θ)ϕ2(x), (14a)

ϵ− = ϵ̄−∆ϵ, ψ−(x) = (sin θ)ϕ1(x)− (cos θ)ϕ2(x), (14b)
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where ϵ̄, ∆ϵ, and θ are given by

ϵ̄ =
ϵ1 + ϵ2

2
, ∆ϵ =

√
(ϵ2 − ϵ1)2 + 4V 2

2
, tan(2θ) =

2V

ϵ2 − ϵ1
. (15)

Exercise 2-2. Derive Eqs. (14) and (15).

In terms of the eigenbasis ψ1(x) and ψ2(x) of Ĥ, The TDSE becomes

iℏ
d

dt

(
c+(t)
c−(t)

)
=

(
ϵ+ 0
0 ϵ−

)(
c+(t)
c−(t)

)
, (16)

whose solution is
Ψ(x, t) = ψ+(x)e

−iω+t + ψ−(x)e
−iω−t, (17)

where ω± = ϵ±/ℏ. The conversion back to the original basis ϕ1(x) and ϕ2(x) can be accomplished by using
Eq. (14).

Exercise 2-3. By setting the initial condition as c1(0) = 1 and c2(0) = 0, show that the time-dependent
probability of the wavefunction to be ϕ1(x) and ϕ2(x) are expressed as

P1(t) = |c1(t)|2 = cos2(Ωt) + cos2(2θ) sin2(Ωt), (18a)

P2(t) = |c2(t)|2 = sin2(2θ) sin2(Ωt), (18b)

respectively, where Ω = ∆ϵ/ℏ.

The fact that Eq. (18) is not dependent on ϵ̄ shows that the zero of energy does not affect the dynamics,
and only the energy difference ϵ2 − ϵ1 between the two quantum states matters.

Let us now numerically simulate Eq. (12). As in the classical dynamics, the most primitive method for
numerical integration is the Euler’s algorithm,

Ψ⃗(t+∆t) = Ψ⃗(t) +

(
d

dt
Ψ⃗(t)

)
∆t = Ψ⃗(t)− iĤ

ℏ
Ψ⃗(t)∆t. (19)

However, as you may have expected from the experience on the classical dynamics, the performance of
Eq. (19) is rather poor and one needs to employ better algorithms for reliable simulation. There is no
equivalent of velocity-Verlet algorithm for TDSE, and a common method of choice is the 4th-order Runge-
Kutta (RK4) algorithm whose detail can be found on the wikipedia page.

Exercise 2-4. Propagate the TDSE for 2 ps by using Euler’s and RK4 algorithms, with the simulation
parameters of ϵ2 − ϵ1 = 400 cm−1, V = 200 cm−1, and ∆t = 0.1 fs. The initial conditions for c1 and c2 are
the same in Exercise 2-3. Plot the populations P1(t) and P2(t) and compare them to Eq. (18) to examine
the accuracy. If we did not derive Eq. (18) beforehand, what is the best way to check the accuracy of the
results?

3 Interaction with Monochromatic Radiation Field

An atom or molecule can absorb and emit light. A simple model for describing such processes is the
time-dependent Hamiltonian matrix

Ĥ(t) =

(
ϵ1 µ⃗ · E⃗(t)

µ⃗ · E⃗(t) ϵ2

)
, (20)
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where µ⃗ is the transition dipole moment that quantifies the tendency of a system to interact with light, and
E⃗(t) is the time-dependent electric field of the light. If we assume that the incoming light is monochromatic
with the angular frequency of ω, we have

E⃗(t) = E⃗0 cos(ωt), (21)

which renders Eq. (22) as

Ĥ(t) =

(
ϵ1 F cos(ωt)

F cos(ωt) ϵ2

)
, (22)

where we have defined F = µ⃗ · E⃗0.

Exercise 3-1. Simulate the TDSE [Eq. (12)] with Ĥ(t) given by Eq. (22). Set the parameters as ϵ2− ϵ1 =
ℏω = 400 cm−1 and F = 40 cm−1, while using the same simulation time and time step as in Exercise 2-4.
Give a physical interpretation of what is happening. Confirm that the simulated dynamics approximately
matches that of Eq. (13) with ϵ1 = ϵ2 and V = F/2. Finally, by gradually increasing F to 40, 100, and 200
cm−1, observe that the agreement starts to break down when F becomes comparable or larger than ℏω.

Such an interesting agreement between the time-independent and dependent Hamiltonians can be explained
in terms of the interaction picture and rotating wave approximation.
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